
NEU CY 5770 Software Vulnerabilities and 
Security

Instructor: Dr. Ziming Zhao



Real-world Examples



Morris Worm

The vulnerability was in fingerd from 
4.3BSD Unix, the version of the 
Berkeley Software Distribution (BSD) 
released in 1986.

https://www.tuhs.org/cgi-bin/utree.pl?file=4.3BSD/usr/src/etc/fingerd.c



OpenBSD 2.8 ftpd Off-by-One

In 2000 a buffer overflow was discovered in the piece of code handling directory names in 
the FTP daemon included in OpenBSD distribution. The vulnerable piece of code is shown 
here (/src/libexec/ftpd/ftpd.c):

MAXPATHLEN is 1024



A Recent Example
JuiceBox 40 Smart EV Charging Station

A classic stack-based buffer overflow 

The Gecko OS provides a template for setting log formats, 
including tags such as timestamp, SSID, host, port, and MAC 
address. The template has a 32-character limit, including a NULL 
byte for termination. Each tag, such as @t for the timestamp, 
uses two characters, allowing a maximum of 15 tags per 
template. When the @t timestamp tag is used, it outputs 23 bytes 
into the message buffer, meaning 15 timestamp tags would 
generate 345 bytes. However, the buffer is only 192 bytes long. 
This vulnerability was uncovered through firmware analysis, 
which helped the team locate the function responsible for 
handling the message format.

https://vicone.com/blog/from-pwn2own-automotive-a-stack-based-buffer-overflow-vulnerability-in-juic
ebox-40-smart-ev-charging-station



A Recent Example
JuiceBox 40 Smart EV Charging Station

https://i.blackhat.com/BH-US-24/Presentations/US24-Alkemade-Low-Energy-to-High-Energy-Hacking-N
earby-EV-Chargers-Over-Bluetooth-Wednesday.pdf?_gl=1*1s6dkoi*_gcl_au*NTY2MjE0MjI2LjE3Mjk1NTc
4Mjg.*_ga*MTIxOTgyOTExMy4xNzI5NTU3ODI5*_ga_K4JK67TFYV*MTcyOTU1NzgyOC4xLjAuMTcyOTU1N

zgyOC4wLjAuMA..&_ga=2.169853153.1304097414.1729557829-1219829113.1729557829



A Recent Example
JuiceBox 40 Smart EV Charging Station



Tesla hacked, 24 zero-days demoed at Pwn2Own 
Automotive 2024



Finding Buffer Overflow in Source Code



Possible Approaches

● Lexical static code analysis
● Semantic static code analysis
● Dynamic program analysis, e.g., Valgrind



Possible Approaches

● Fuzzing: breaking software/hardware with random inputs
○ Blackbox vs. whitebox
○ Coverage-based, mutation-based, grammar-based
○ Symbolic execution, concolic execution
○ Re-hosting

● AI and Large Language Models

https://www.fuzzingbook.org/


